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Abstract 

Rapid advances in mobile computing technology have the potential to revolutionize 

organizational research by facilitating new methods of data collection. The emergence of 

wearable electronic sensors, in particular, harbors the promise of making the large-scale 

collection of high-resolution data related to human interactions and social behavior economically 

viable. Popular press and practitioner oriented research outlets have begun to tout the game-

changing potential of wearable sensors for both researchers and practitioners. We systematically 

examine the utility of current wearable sensor technology for capturing behavioral constructs at 

the individual and team level. In the process, we provide a model for performing validation work 

in this new domain of measurement. Our findings highlight the need for organizational 

researchers to take an active role in the development of wearable sensor systems to ensure that 

the measures derived from these devices and sensors allow us to leverage and extend the extant 

knowledge base. We also offer a caution regarding the potential sources of error arising from 

wearable sensors in behavioral research. 

Keywords: wearable sensors, group research methodology, big data 
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The Promise and Perils of Wearable Sensors in Organizational 

The advent of “big data” collection and computing is revolutionizing the world, and thus 

it should not be surprising that this development would eventually touch the lives of 

organizational researchers (George, Haas, & Pentland, 2014). Advances in mobile computing 

and sensor technology, in particular, have created the opportunity to transcend the limits of 

traditional data collection instruments. These new technological developments have the potential 

to significantly advance research on individuals, teams and multiteam systems. However, the 

scholarly community has yet to address the questions related to the integration of these new 

measurement methods into the extant knowledge base. 

Group research has generally focused on constructs related to individual behavior within 

groups (e.g. boundary spanning), group process (e.g., leadership emergence), and group structure 

(e.g., interaction patterns) (Marks, Zaccaro, & Mathieu, 2000; Sparrowe, Liden, Wayne, & 

Kraimer, 2001; Greenberg & Baron, 1995). Traditionally, constructs in this domain have been 

gathered using retrospective self-reports obtained from team members. The problems associated 

with the use of retrospective self-reports to measure these attributes have been well documented, 

such as social desirability bias, halo and leniency effects (Donaldson & Grant-Vallone, 2002; 

Podsakoff, MacKenzie, Lee, & Podsakoff, 2003). Some researchers have attempted to overcome 

these limitations through video coding of interpersonal interactions. However, this approach 

tends to be resources intensive, and is usually restricted to short-term laboratory contexts. 

However, recent technological advances in mobile computing create the possibility of collecting 

high-resolution data related to social interactions in unrestricted space over extended time 

periods. 
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Wearable sensors (WSs) are mobile devices containing electronic components that record 

the environmental context of the device bearing person. For example, mobile devices fitted with 

microphones and Bluetooth modules can generate data streams describing ambient sound and 

proximity to other devices. These low-order data streams have the potential to then provide the 

foundation for higher-order measures of individual behavior and social interactions. The benefits 

of WS technology have been a prominent topic in the practitioner and popular press outlets (e.g., 

Silverman, 2013). Scholarly interest in this technology has also been significant, as evidenced by 

the Organizational Behavior Division of the Academy of Management, which bestowed the 2013 

Outstanding Practitioner-Oriented Publication Award to the author of an article based on WS-

generated data (Pentland, 2012). 

Relative to the substantial scholarly interest in leveraging WS technology, the related 

body of research is somewhat limited, and there are many questions as to how to best employ 

WS-derived data for measuring established behavioral and social constructs (Kim, McFee, 

Olguin, Waber, & Pentland, 2012; Olguin & Pentland, 2010; Pentland, 2012). We begin the 

process of trying to integrate this new measurement capacity into the extant knowledge base by 

conducting four distinct studies. These studies are aimed at (1) establishing construct validation 

protocols for WSs for different types of research studies and (2) providing evidence from the 

application of such protocols in WS deployment conditions that range from short-term laboratory 

experiments, with strict control over environmental conditions, to long-term field studies, with 

little control over time or space. That is, the sequence of studies considers WS generated data 

streams ranging in duration from minutes to weeks and systematically evaluates the utility of this 

novel data gathering method for the measurement of interaction patterns in contexts where, in 

most cases, we have known true scores or the best available alternative.  
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Our results provide initial evidence of both the promise and the perils of using WSs in 

behavioral research. We also present research protocols that show how organizational 

researchers can take an active role in the continued advancement of wearable sensor systems. 

The involvement of active researchers in this area is sorely needed to ensure that the 

development of measures integrates with the extant knowledge base. Like any measurement 

method, there are limits to what can be accomplished with WSs. However, when appropriately 

deployed, configured, and analyzed, WSs can capture variables such as boundary spanning, 

leadership emergence, and group structure without the need for problematic retrospective self-

reports, reports from others, or direct experimenter observation. 

Wearable Sensors 

As more WSs are offered on the market, researchers are faced with choices related to 

both the sensor composition and configuration of these platforms. The WSs used in all of our 

studies were primarily developed to measure interaction patterns among individuals and have 

been used in several previous studies (e.g. Kim et al., 2012; Olguin et al., 2009; Olguin & 

Pentland, 2010), including the aforementioned paper (Pentland, 2012) that was recognized by the 

Academy of Management in 2013. This WS is produced by Sociometric Solutions and is a white 

"badge" about the same size as a deck of playing cards worn around the neck of participants on a 

lanyard. Specifically, this WS uses a Bluetooth sensor to measure physical proximity, an infrared 

detector to measure face-to-face positioning, an accelerometer for measuring body movement 

and posture and microphones to measure verbal activity (Olguin et al., 2009). After undergoing a 

series of computations, the raw data from these sensors are used to create measures of lower 

level behavioral dimensions, such as body movement, co-location, and verbal activity. These 
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basic measures can then be used to create more abstract constructs, such as network centrality, 

social dominance, cohesion, and so on. 

We note that this is not the only WS in existence and, while the decisions related to 

sensor composition and configuration are critical; the selection of the appropriate WS should be 

informed by the focal research question. A systematic comparison of different WS options 

currently available is outside the scope of this paper. It is important to highlight that WS 

technology is rapidly developing and platforms for delivering sensors are changing quickly. Still, 

regardless of whatever platform one uses, many of the component sensors that are used in these 

devices (Bluetooth, microphones, infrared and accelerometers) are commodities that remain 

relatively constant across platforms. As such, the primary focus of our research is on the 

individual component sensors, rather than on a specific platform. That is, even though Google 

Glass has been discontinued, all of the components that went into that specific platform live on. 

Other new platforms will eventually be developed, and replace or complement existing ones. Just 

as alternative devices for delivering music have come and gone over the years (phonographs, 8-

track players, cassettes, mp3, and so on), there will always be music. Thus, measurement work in 

this area of the organizational sciences should be directed at how to employ the core component 

sensors, as opposed to any one specific device. 

Prior to getting into a detailed description of each of the four studies in this manuscript, 

we should note that a comprehensive construct validation effort of WSs is complicated for 

several reasons. First, there are different sources of error and the sources of these errors are not 

all equal when it comes to construct validity concerns. For example, even though the WSs we 

study all come from the same manufacturer, there are still variations in the sensitivity of each 
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WS. This creates both “within” and “between” WS error variance even when the WSs are 

exposed to the exact same environmental stimuli. 

Within WS variability can be attributed simply to the unreliability of any one of the 

component sensors (e.g. microphone or Bluetooth). Whereas, this particular source of error 

variance may be regrettable in a perfect-world sense, it does not do serious damage to WS-based 

measures. A WS assesses the surrounding environment several times each minute, and generates 

an extremely large number of assessments when worn for any length of time. This is analogous 

to a test with thousands of items, and because random errors tend to cancel out over time, even 

small correlations between each item and the test as a whole would generate a highly reliable 

assessment (Nunnally & Bernstein, 1994).  

However, there is also some degree of “between” WS variability because component 

WSs may have different mean levels of detection when exposed to the same environment. For 

example, the microphone in one WS might simply be more sensitive than the microphone in a 

different WS – a phenomenon that would be familiar to anyone who ever worked in a 

contemporary sound studio – but perhaps not an organizational researcher who has not worked 

closely with microphones. Unlike within WS variance, which is a relatively benign problem for 

reliability, between WS variability causes bias that accumulates over time, if not detected, and 

can threaten validity. This is a serious problem because it means that some WSs will always 

over-detect relative to other WSs, and the effect of this error compounds over time (rather than 

canceling out), leading to systematic errors in measurement. For example, an individual wearing 

a WS with a more sensitive Bluetooth sensor will always report a more central position than is 

warranted in the proximity network relative to other individuals. 
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Secondly, even if one ignores variability within and between WSs, the fact that 

measurements takes place at a raw level (i.e., the sensors themselves), the basic level (e.g. co-

location and verbal activity), and at a higher level (e.g. dominance, mirroring and so on) further 

complicates matters. The relationships between the raw data and higher level measures are not 

straightforward due to the complexity (and proprietary nature) of the post processing algorithms. 

In particular, the proprietary nature of the post processing algorithms makes it difficult to explain 

why different results at higher levels emerge from the exact same data at raw levels.  

Third, as we noted above, WS platforms and individual components present a moving 

target. Thus, any construct validation effort has to be appreciated as a single snapshot in time. 

Still, one snapshot in time is useful for serving as a benchmark for the future, where additional 

snapshots can be strung together to create the evolving trajectory of this technology. The 

information provided at one point in time can also focus future development efforts. This is 

especially the case with the initial development of WSs because this development has been 

dominated by engineers, who lack expertise in psychometrics and may not have intimate 

familiarity with the nature of history of central constructs in the organizational sciences.  

With these caveats in mind, Table 1 provides an overview of the four studies conducted 

as part of this effort. In general, the studies move from short-term, highly controlled, and small 

space contexts to long-term, totally uncontrolled, and unrestricted space contexts. Taken as a 

whole, the four studies presented here provide initial evidence regarding the construct validity of 

raw, basic and higher level measures derived from WSs across a range of contexts where they 

might be deployed in programs of research involving individuals and groups.  

--------------------------------- 

Insert Table 1 about here 

--------------------------------- 
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Study 1 

 The purpose of Study 1 was to evaluate the raw data recorded via Bluetooth, infrared, and 

microphone, as well as the ability to use these sensors to derive measures of co-location and 

verbal activity. In a field study context, the WSs may be prone to error due to jostling of the WS, 

between subject differences, environmental noise, and other sources of contamination. As a 

baseline, the focus of Study 1 was on the ability to detect true score variance in a context where 

these aspects could be well controlled (i.e., a lab setting). 

Evidence Regarding Co-Location 

Co-location and Bluetooth. We performed a range of tests to evaluate the ability of WSs 

to detect co-location via Bluetooth and infrared. First, we discuss the method and results for 

Bluetooth. In this test, we placed 12 WSs each on two corkboards and placed these boards on 

easels at varying distances (i.e. 13 distances ranging from 1meter to 40 meters) and with varying 

barriers between them. Because the detection interval of Bluetooth sensors is approximately 30 

seconds, the boards were left in place for 3 minutes at each experimental condition to allow for 

repeated detections. Each condition was repeated 3 times and the WSs were powered down and 

then powered back up in between each session to evaluate any variability that may result from 

this process. This approach allowed us to simultaneously compare multiple WSs in multiple 

sessions and partition both within and between WS variance. This design also allowed us to 

compare the relative magnitude of within and between WS variance to the amount of variance 

arising from varying the experimental conditions, that is, the environmental stimulus. 

The Bluetooth sensor generates a categorical measure of detection (on/off) comprised of 

a time/date stamp, sender WS number, receiver WS number, and a radio signal strength indicator 

(RSSI) that varies based on the intensity of signal between WSs ranging from -65 to -95 with the 
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larger value (-65) representing a higher strength when compared to the lower value (-95). We 

only considered detections across the corkboards at distances varying between 1 and 40 meters. 

We counted the number of detections per WS and divided by 36 (3 minutes and 12 potential 

detected WSs) to arrive at an average detection count per minute for each WS. The box and 

whisker plot in Figure 1 presents these values. The number of observations for this plot is 936 

which is the result of 24 WSs X 3 sessions X 13 experimental conditions (i.e. distances). 

Bluetooth technology is expected to detect to a distance of 10 meters, so in a perfect world, each 

WS would provide 2 detections per minute at each of the distances up to 10 meters, with no 

detections at distances greater than 10 meters (Hallberg, Nilsson, & Synnes, 2003). This 2.0 

detection count may be unattainable in practice because each Bluetooth module independently 

cycles every 30 seconds, therefore, it is unlikely to reach this technological maximum. Still, the 

WS should detect at least 1.0 per minute per co-located WS, or else one would draw the false 

inference that the two WSs were not co-located when, in fact, they were.  

--------------------------------- 

Insert Figure 1 about here 

--------------------------------- 

It should also be noted that the WS platform allows for researchers to adjust the 

sensitivity of the Bluetooth sensor, and how one sets this parameter will affect results. Thus, this 

setting becomes an important further consideration in the decision-making process for 

researchers employing WSs. For the first run of this test, we used the maximum sensitivity and 

relied on Bluetooth RSSI as a threshold in follow up analyses, as previously recommended 

(Olguin et al., 2009). In subsequent studies reported in this manuscript that focus on broader 

behavioral and social constructs, such as boundary spanning, leadership emergence, and social 
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structure, we will see that decisions regarding how to set parameters and cutoffs will have a 

major impact on inferences. Thus, our results here foreshadow those results. 

As we noted earlier, the performance for manufactured component sensors can vary from 

the technical specifications, so it should not come as a surprise that there is variability both 

within and between Bluetooth sensors. However, taken as a whole, the results provided mixed 

support for the potential for the Bluetooth sensor to serve as a pure measure of co-location. First, 

the count of detections at 20 meters is far less than that at 10 meters, which is somewhat 

comforting. However, the fact that WSs detect at distances well beyond 10 meters is concerning, 

because detections at long distances increase the risk of over-detection. Forty meters is far 

beyond the distance one would expect for meaningful interactions between two people, and yet, 

in some instances, the WSs would still report co-location of individuals separated by this 

distance. 

In addition, the count of detections observed for any one distance varies a great deal. The 

lack of uniform detection counts at the same distance means that there is a potential that some 

WSs may over or under detect when compared to the true score. As we note earlier, the degree to 

which this error variance is within versus between WSs is important in terms of whether or not 

the error would either cancel out or compound over time. Our subsequent analyses examine this 

issue more specifically. As an aside, while also investigated, we noted very little variance 

attributable to WS by distance interactions. 

Although informative, Figure 1 is limited because it does not consider RSSI.  According 

to previous calibration efforts an RSSI of -80 represents an appropriate threshold for face-to-face 

interactions (Olguin et al., 2009). Prior research has shown that a distance of 1-4 meters is an 

appropriate estimate for personal and social space (Hall, 1990). Thus, in an ideal case, filtering 
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detections based on RSSI would result in a high detection count at 1-4 meters with a sharp drop 

off in detection count at distances greater than 4 meters. 

To test this threshold, we reduced the dataset to include only detections of -80 RSSI or 

greater. Again, for RSSI signal strength the larger value such as -70 is a stronger signal than and 

RSSI of -90 which would be weaker. Figure 2 illustrates the results. In Figure 2, the detection 

count does appear to decline at a sharper rate as distances increase when compared to Figure 1. 

In addition, the detection count is significantly reduced at longer distances. However, there 

remains variance in the number of detections as well as detections at distances beyond 4 meters. 

Collectively, these results suggest that how you set the threshold can affect the performance of 

Bluetooth as a measure of co-location, at least in this specific context. Nevertheless, there 

remains substantial error variance in detection count at each specified distance. While not shown, 

other detection thresholds were also investigated, and none consistently provided the desired 

drop-off as the distance between WSs exceeded 4 meters. 

--------------------------------- 

Insert Figure 2 about here 

--------------------------------- 

Figures 1 and 2 illustrate the role of distance in assessing co-location, but the analyses 

reported there do not account for the presence of obstacles, such as office walls or clothing (e.g., 

jacket) when it comes to detecting co-location via Bluetooth. That is, two individuals may be 

within 4 meters of each other, but if they are separated by a wall, they would be precluded from 

interaction, voiding the notion of co-location. Thus, we tested the degree to which various 

obstacles affected the inferences regarding co-location that might be derived from Bluetooth. 

Figure 3 represents the Bluetooth detection count per minute using an RSSI threshold of -

80 with physical barriers that might be encountered in a typical work environment such as a 
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body, coat, wall, and window. For comparison purposes the distance between the boards were 

approximately 1.5 meters for each of the barriers. The sample size for this plot is 432, which is 

the result of 24 WSs X 3 sessions X 6 experimental conditions. In an ideal case, this figure 

would indicate a normal detection count for the coat and a count of zero for the other barriers. 

This would indicate that the WS can maintain its detection capabilities when clothing is worn 

over the WS, but that the WS does not detect co-location across barriers that would normally 

impede face to face communication.  

The results illustrated in Figure 3 indicate that the detection count remains high for the 

coat, but it also remains high for many other barriers. These results suggest that the WSs are 

robust to measuring co-location when clothing is worn over the WS; however, the WSs may over 

report co-location in the presence of other barriers that effectively preclude interaction between 

adjacent parties, such as a cubicle wall. Therefore, it is essential that researchers who deploy 

WSs be aware of the precise physical layout of contexts where the WSs are to be employed.  

--------------------------------- 

Insert Figure 3 about here 

--------------------------------- 

Although the figures discussed above illustrate the ability of Bluetooth to detect co-

location when there is a known signal, these analyses do not discriminate between errors that can 

be traced to within versus between WS variability. As emphasized earlier, if a large portion of 

the variance in detection counts is due to differences within WSs, then much of this error will 

cancel out over long deployments where, in essence, there may be thousands of “items,” and 

individuals’ scores will converge on their true scores. In contrast, if the variability is between 

WSs, then the error will compound over long deployments, and substantially bias the results for 

specific individuals.  
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Table 2 provides results from our analysis that partitions the error variance into these two 

sources. These data are the same as those represented in Figure 2 and 3, thus representing only 

detections of RSSI -80 or greater. The sample size is 24 WSs X 3 sessions X 19 conditions 

resulting in 1,368 observations (the conditions in this analysis include both distances and 

barriers). In this analysis, the WS detection count is the dependent variable, and a series of 

regression models are used to partition variance. In the first regression, we include the session 

fixed effects to measure the amount of variance due to the repeated sessions. The results of this 

Model 1 suggest that only 0.5% of the variance is due to session, which is what one would 

expect since the sessions were identical replications of each other. Model 2 includes both session 

and distance fixed effects. The results indicate that conditions matter – explaining an incremental 

59% of the variance in Bluetooth detection count. This indicates that variance in detection counts 

is reflective of the experienced conditions.  

In Model 3 from Table 2, we include the WS fixed effect that captures the amount of 

between WS variance. These fixed effects predict an incremental 8.2% of the variance in 

Bluetooth detection count, which is all attributable to between WS variance. In Model 4, we 

include a measure for within WS variance by including an interaction between the session and 

WS fixed effect dummy codes. The inclusion of these fixed effects assesses the potential for 

within WS variance beyond session, experimental condition, and WS fixed effects. The inclusion 

of these effects explains an incremental 1.4% of the variance in detection count. Finally, in a 

separate analysis we included a WS experimental condition interaction, which explained 0.7% of 

the variance in detection count. Therefore, while there is some meaningful between WS variance, 

it does not appear that there is significant within WS variance in different sessions or 

experimental conditions.  
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In summary, almost 60% of the variance is due to variations in the experimental 

conditions, which is encouraging, however, 8% of the variance was systematic bias attributed to 

specific WSs that would not average out, but instead, compound over time. This means that this 

variance would be misattributed to individuals, when in reality; it should be attributed to the 

specific WS worn by the individuals.  

-------------------------------- 

Insert Table 2 about here 

--------------------------------- 

Co-location and Infrared. In addition to Bluetooth, co-location can also be derived from 

the infrared sensor. Compared to Bluetooth, infrared detection requires more strict conditions in 

order to indicate proximity. With the WSs studied as part of this research, infrared detection 

should occur within 1.5 meters of separation, provided the faces of the WSs are within15 degrees 

of being parallel with one another based on the technical constraints of the technology (Olguin et 

al., 2009). Following the same protocol that we developed and discussed previously with 

Bluetooth, we examined the infrared detection count for WSs summed by WS, session, and 

distance to create 936 observations (i.e., 24 WSs X 3 sessions X 13 distances). Ideally, the 

detection count should be high at 1 meter and diminish to 0 at greater distances. Also, the 

detection count should not vary by WS.  

The results of this analysis are documented in the box plot in Figure 4, where we plot the 

detection count per minute at each of the distances. This figure shows that the count of detection 

is approximately 16 detections per minute at 1 meter and that this detection count significantly 

decreases, with only a few outlier detections at 2 meters, and no detections at greater distances. 

Most people would consider 3-4 meters a reasonable distance for face-to-face social interactions, 

and therefore one might conclude that infrared sensors under-detect co-location. This figure also 
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shows that there is a small amount of variance in the detection counts at 1 meter that is 

attributable to between WS variability at this range. Again, a person with a more sensitive 

infrared sensor would be attributed more co-location inferences than a person with a less 

sensitive WS, and this difference, which should really be attributed to the WS, would not cancel 

out over long term deployments. 

--------------------------------- 

Insert Figure 4 about here 

--------------------------------- 

As was the case for Bluetooth, we also examined the impact of common barriers on 

infrared detection using the same protocol. As one would expect, infrared detections are very 

sensitive to any physical break in line of sight. Therefore, we would expect that detection counts 

would be zero across all barriers, even though ideally a coat would not preclude an inference of 

co-location. Figure 5 illustrates the actual detection counts for each of the barrier experimental 

conditions, showing that there are essentially no detections through any of the opaque barriers. 

However, there is a detection count greater than zero through a window, and there was a high 

level of between WS variability in terms of how the window affected reports of co-location.  

--------------------------------- 

Insert Figure 5 about here 

--------------------------------- 

While helpful in understanding the potential of WSs to capture physical proximity via 

infrared, these figures do not precisely measure the amount of variance resulting from the two 

different sources of error. In Table 3 we use OLS regression across all the infrared detection 

counts across both distance and barrier experimental conditions. The number of observations for 

this study is 1,368 based on 24 WS X 3 sessions X 19 conditions. Using infrared detection 

counts as the dependent variable in Model 1, we include the session fixed effects, which should 
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explain no variance since each of the sessions were exact replications. These findings are largely 

consistent with the results shown in Table 3. In Model 2, we include the experimental condition, 

which explains 94.4% of the variance in detection count. This is a strong indicator that detection 

count is reflecting the actual conditions. In Model 3, we include the fixed effects for the WSs. 

Model 3 documents that only 0.3% of the variance in detection count is attributable to between 

WS variability. Finally, in Model 4 we include the interaction of session and WS fixed effects. 

The inclusion of these interaction variables explains only 0.1% of the variance in infrared 

detection count. In sum, these results suggest that nearly all of the variance in detection count for 

infrared sensors is a result of differences in the true signal rather than between or within WS 

variability. Despite the lack of between and within WS variance, the inability for infrared to 

detect co-location at 3-4 meters severely limits the utility of the sensor for assessing co-location, 

and this is likely to exacerbated in real world contexts where this sensor is attached to a platform 

worn loosely round the neck and chest.. 

--------------------------------- 

Insert Table 3 about here 

--------------------------------- 

Because the dependent variables in all these tests were frequency counts, they technically 

require a different model specification. Thus, we replicated all these analysis using a Poisson 

model approximation and found that the results converged across methods. We report ordinary 

least square results here because they provide a means for partitioning variance across alternative 

sources that is commonly understood (i.e. R2). Results based on Poisson regression are available 

from the authors.  

Summary. Regardless of the analytical method, the results associated with assessing co-

location via Bluetooth and infrared suggests that the majority of the variance in both sensors can 
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be explained by differences in proximity. Moreover, we find that there is between WS variance 

in Bluetooth detection counts that will not average out, and will compound over longer 

deployments. We also find little evidence of within WS variance, suggesting that the WSs appear 

relatively stable in detection counts for infrared and Bluetooth across deployment sessions. We 

also show that the threshold value that is chosen will have a strong impact on the results of 

Bluetooth, which again foreshadows results we will discuss later in this manuscript when we 

attempt to measure higher level behavioral and social constructs. Finally, the inability of infrared 

to detect at 3-4 meters severely limits the sensors utility in measuring co-location. 

Evidence Regarding Verbal Activity 

We performed a range of tests to assess the ability of the microphone to detect verbal 

activity. In the first test, we placed 24 WSs in a stack (because microphone ports are on top of 

the unit) with all of the microphones pointed directly at a stereo speaker 1.5 meters away. To 

conduct this test we used two tones, the first tone covered frequencies from 20 Hz to 2000 Hz 

(which we refer to as a “sweep” tone) over a period of 30 seconds and the second tone was stable 

at 170 Hz for 10 seconds (this is the average frequency of human voice (Titze, 1994). To further 

put this in perspective, the standard 88 key piano has a range of 32 Hz to 4,186 Hz, with “Middle 

C” on the piano registering at 261 Hz. 

Each experimental session took place in a quiet, isolated office and included 10 seconds 

of ambient noise, 30 seconds of the sweep tone, 10 seconds of ambient noise, 10 seconds of the 

stable tone, and concluded with 10 seconds of ambient noise. This procedure was repeated across 

3 sessions, turning the WSs off and back on between sessions. It should be noted that there are 

multiple data streams that come from the microphones. First, there is a measure of raw volume. 

Second, the microphone provides both amplitude and frequency levels, as well as variability 
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within 4 frequency bands (Olguin et al., 2009). Our analysis covers overall volume and the 

filtered data within the first frequency band intended to correspond to human vocalization, 

including frequencies between 85 to 222 Hz (Olguin et al., 2009). Volume and amplitude both 

refer to the overall loudness of sound (size of the sound wave). Frequency refers to the pitch of 

the sound (concentration of sound waves). 

 In this analysis, we focus only on the first frequency band. All microphone measures are 

automatically aggregated every 8 milliseconds within the device, which, in turn, outputs an 

average of these values once per second. We coded each second of the data using a dummy code 

for each session, each WS, and the experimental condition (including background noise, sweep 

tone and stable tone). Because there were multiple seconds for each experimental condition these 

values were then collapsed by averaging per experimental condition. Therefore, the number of 

observations for this analysis was 24 WS X 3 experimental conditions X 3 sessions for a total of 

216. 

In Tables 4 and 5, we conduct a regression analysis for raw volume and filtered 

amplitude, respectively. In these analyses, the dependent variables are the resultant measures of 

volume and amplitude, and the independent variables are dummy codes that capture the tones, 

sessions, and WSs. In an ideal case, all of the variance in our dependent variables should be 

attributed to the tones.  

--------------------------------- 

Insert Table 4 about here 

--------------------------------- 

As shown in Table 4, Model 1 includes the session fixed effects, which account for 0.3% 

of the variance in volume. We attribute this to subtle differences in ambient background noise 

between sessions. Even though the room and surrounding area seemed quiet when conducting 
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test, it was not a completely soundproof room. In Model 2, we include the 2 experimental 

condition dummy codes with background noise as the base condition. The coefficients for both 

tones are positive and significant, and taken together explained 67% of the variance in volume.  

In Model 3, we include the effect for WS, and this accounts for 23.3% of the variance in 

volume. Thus, whereas the means of volume for each of the tones is statistically different from 

background noise, there remains a high level of variance between WSs. This is troubling because 

bias between WSs may cause a researcher to inappropriately assign speaking to some individuals 

due to WS differences rather than true variance in volume. One potential solution to this would 

be to employ the first derivative of this measure. However, this may create more problems than it 

solves because this creates a measure of “within person” speaking which is rarely the index of 

interest for most behavioral researchers. Most behavioral research is interested in “between 

person” differences in speaking (that is, who speaks the most and the least) not “within person” 

differences in speaking (that is, is one specific person speaking more or less than he or she 

usually does). The first derivative treats every person as speaking the exact same amount in 

every context. 

In Model 4, we include an interaction between the session and WS fixed effects in order 

to measure the consistency with which the WSs detect their environment. The inclusion of these 

interaction variables explains an incremental 1.2% of the variance in volume; therefore, it 

appears that any given WS is relatively consistent in detecting sound. 

In Table 5, we repeat this analysis employing speaking band amplitude as the dependent 

variable. In Model 1, the session fixed effects account for 0.3% of variance in amplitude. In 

Model 2, as expected, the coefficient for both the sweep and constant tone are positive and 

statistically significant. The inclusion of these dummy code measures of tone explains 94.4% of 
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the variance in amplitude. This suggests that nearly all of the variance in amplitude is a result of 

environmental sound. In Model 3, we include WS fixed effects, which explains an incremental 

3.8% of the variance in amplitude. This is significantly less than the between WS effects 

observed when predicting volume. Finally, in Model 4 we include the interaction of the session 

and WS fixed effects, which accounts for only 0.9% of the variance in amplitude suggesting that 

overall, the WSs are relatively reliable in detecting sound across deployment sessions. 

--------------------------------- 

Insert Table 5 about here 

--------------------------------- 

Summary. These tests seem to suggest that simple amplitude measures of select 

frequency bands may be less susceptible to microphone induced bias. However, there are two 

caveats to this conclusion. First, the tests reported here were very short in duration, and the 

potential for longer tests to provide more valid data cannot be ruled out. Second, the tones tested 

here were not actual human voices. Thus, with these two caveats in mind, we turn to Study 2, 

which addresses both of these limitations.  

Study 2 

In Study 2, we focused specifically on the validity of the microphone and the WS 

proprietary analytics to properly assign speaking. Unlike all the tests performed as part of the 

first study, Study 2 involved human participants interacting with each other in a laboratory 

setting. Because it involves human participants who may vary in both speech tone and volume, 

this study is less tightly controlled than Study 1, but in terms of foreshadowing, it is more tightly 

controlled than Study 3. Study 2 essentially simulates how one might use WSs as part of a 

laboratory study to simply measure verbal activity (as an alternative to employing coded 
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videotapes of interactions). Study 3, on the other hand, simulates how one might use WSs as part 

of a study assessing behavioral constructs, such as boundary spanning and emergent leadership.  

In Study 2, four undergraduate participants, sitting 1.5 meters apart, wore two WSs each 

and read a structured script according to the outline in Table 6. During this period in our study, 

the WSs we were studying had a flaw in the firmware that led to a random failure in the 

microphone that manifested itself in a flat-line audio reading across the entire session. This 

problem with flat-lining was later resolved with a firmware update, but following the 

manufacturers recommendations at the time the research participants wore two WSs in order to 

minimize data loss.  

The script included a variety of speakers, speaking times, and conversation structures. In 

order to maintain conformity with the prescribed script, each session was supervised by a 

research assistant who kept participants on track. The purpose of this study is to determine the 

potential of the WS to identify the speaker and assess speaking time accurately. This setting 

provides an opportunity to assess the effectiveness of speech detection using the WSs in 

conjunction with their supporting speech detection algorithms in a context where the true score 

was known. 

--------------------------------- 

Insert Table 6 about here 

--------------------------------- 

The data were collected across 8 sessions with different subjects in each session, and, as 

mentioned above, each of the 4 participants was wearing 2 WSs, which resulted in a total of 64 

WS samples and 16 sessions. Among these sessions, 8 WSs failed, resulting in 6 failed team 

sessions. Therefore, the number of observations for this study is 160, which results from 10 
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sessions X 4 Roles X 4 Minutes. The actual WS indicated speaking seconds are reported in Table 

7.  

It is important to note that there are an array of speech detection algorithms available to 

researchers to analyze vocal activity patterns (Proakis, 1999). In addition, the provided 

proprietary analytical software supports a number of settings to identify the speaker and assess 

speaking time. Thus, this is another area where researchers would need to make important 

decisions on which algorithm to employ based on their research question and contextual setting. 

In order to make this determination for our study, we employed every possible setting 

combination available at the time for a total of 8 analyses. Using these outputs we evaluated each 

according to their accuracy, that is, the degree to which the output represented the true score 

value. In order to conserve length, we include results for just two of the algorithms here, namely 

the manufacturer recommended algorithm and an optimized algorithm that was the most accurate 

setting combination in this context. 

In Table 7, we show the correlations among these different predictors and the actual 

speaking time. This table shows that the correlation among speech as measured by the two 

algorithms is, r = .47, p < .01. The results in Table 7 suggest that the correlation between the 

manufacturer recommended algorithm and actual speaking is r = .15, p = n.s., whereas the 

correlation between the optimized algorithm and actual speaking is r = 0.36 p < .01. The 

divergent performance of these algorithms with respect to the detection of actual speaking in this 

experiment illustrates that, for both theoretical and conceptual reasons, it is critical to establish a 

proper match between WS, speech detection logic, research question, and environment. 

Moreover, the low correlations for the algorithms suggest limitations in the current technology 

for accurately measuring speaking time. 
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--------------------------------- 

Insert Table 7 about here 

--------------------------------- 

Summary. Taken as a whole, the results from Study 1 and Study 2 indicate that the WSs 

we examined performed better when assessing co-location relative to verbal activity. However, it 

also needs to be kept in mind that these studies were both short in duration, and longer time 

intervals would generate many more measurement opportunities. Thus, even though signal 

detection is low, across thousands of detections, this could still generate reliable measures. This 

is analogous to a situation where a very long test, like the Scholastic Aptitude Test (SAT), can 

generate reliable estimates of aptitude despite very low (r = .05) item-total correlations. With this 

in mind, we performed two additional studies that lengthened the duration for detection, and 

where we targeted broader behavioral and social constructs. 

Study 3  

Study 3a and 3b attempt to evaluate the ability of WSs to assess boundary spanning 

behavior and leadership emergence respectively. Like Study 2, in Study 3a we have known “true 

scores” in a relatively controlled setting where we knew precisely who was and who was not a 

boundary spanner. In Study 3b, although we do not have true scores for leadership emergence, 

we had the best known alternative – aggregated ratings from other team members regarding the 

focal individual, where we show high levels of agreement between raters. Although boundary 

spanning and leadership emergence are hardly the only concerns researchers have with respect to 

team dynamics, it is a reasonable first step for assessing the extent WSs can be utilized to 

measure constructs of interest to organizational researchers, and hence, show relevance for the 

extant knowledge base. 

Evidence Regarding Boundary Spanning 
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A boundary spanner refers to an individual who coordinates work-related activities 

between established formal boundaries (Davison & Hollenbeck, 2012; Marrone, 2010). 

Traditional measures of boundary spanning behavior often rely on self-reports that are subject to 

well-known biases, especially when individuals are asked to respond to boundary spanning 

activities over an extended period of time (e.g., week, months, quarters) (Podsakoff & Organ, 

1986). Thus, it was imperative in this context to have a known “true score” for validating WS-

based measures of boundary spanning behavior. 

Study 3a was conducted in a laboratory context where the individuals wearing WSs were 

working in three independent teams of four to five members each separated in isolated rooms of 

a larger research suite. While these teams worked, a team of observers (n = 3 to 6 who also wore 

WSs) moved back and forth between the rooms, sometimes aggregating themselves in a separate 

room of the suite to compare notes. This was all conducted as part of a class, and the observers 

were, with few exceptions, not members of the research team, but merely advisors to the students 

in this class. In this context, the observers are known boundary spanners moving between the 

boundaries of the teams, whereas the team members themselves, rarely, if ever crossed 

boundaries during the course of the session. We gathered data across 13 separate sessions, and in 

the end, we had data from 235 individuals, of which 31% were known boundary spanners and 

69% were known to not be boundary spanners.  

Across all sessions, the WS reported a total 190,607 total Bluetooth detections and we 

analyzed this data to see if one could discriminate boundary spanners from non-boundary 

spanners using Bluetooth detections set at alternative levels. That is, boundary spanning status 

(coded 0 or 1) should show a significant positive correlation with between team detections, and a 

statistically significant negative correlation with within team connections because the non-
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boundary spanners were together at all times. Based on the results from Study 1, we also varied 

the detection setting to see if this had any impact on the resulting number of detections or the 

correlations between boundary spanning status and within and between team detections.     

----------------------------------- 

Insert Table 8 about here 

----------------------------------- 

Table 8 shows the descriptive statistics and correlations between the total number of 

within-team ties and between-team ties at varying Bluetooth RSSI cut-off values ranging from -

70 to -90. For RSSI signal strength, the larger the value of RSSI, such as -70, would be a 

stronger signal relative to -90. Within-team ties were calculated as the sum of all Bluetooth 

detections between a WS worn by an individual and all other WSs that were assigned to his or 

her team including boundary-spanners which were also assigned to their own team. Between-

team ties were calculated as the sum of all Bluetooth detections from other WSs that were worn 

by individuals not assigned on the same team. As noted in Study 1, the Bluetooth sensor 

generates a categorical measure of detection (on/off), a time/date stamp, sender WS number, 

receiver WS number, and an RSSI ranging from -65 to -95 that varies with the distance between 

WSs.   

The first and second columns of Table 8 show that a significant number of detections are 

removed at more stringent thresholds. That is, we see much higher means and standard 

deviations at the more liberal -90 RSSI threshold and much lower means and standard deviations 

at the more conservative -70 RSSI threshold. Thus, as one would expect, the threshold setting 

has a major impact on the mean and standard deviation of detections. 

More critically, the correlations reported in the third and fourth columns of Table 8 show 

that the threshold setting also has an impact on the validity of the WS for detecting boundary 
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spanners. The correlation between known boundary spanning status and between team detections 

was highest (r = .43, p < .05) at more liberal settings, and then decreased steadily as setting 

became more stringent (r = .16, p < .05). It should be noted that the manufacturer recommended 

setting provided by the manufacturer (RSSI > - 80) did not result in the highest validity in this 

context (r = .32, p < .05), and instead, a researcher in this context would generate a more valid 

measure by using a more lenient threshold when it came to predicting the boundary spanning 

behavior of individuals.  

Table 8 shows that this same pattern of results was reinforced when we examined within 

team ties. Non-boundary spanners should show more within team ties relative to boundary 

spanners because they never left the room that they occupied with their other team members.  

Indeed, the correlation between boundary spanning status and within team detections was 

negative and statistically significant. This correlation was strongly influenced by the set 

threshold, however, and again, the highest validity (r = -.63, p < .05) was found with the most 

liberal threshold, and this decreased steadily as the threshold became more stringent, bottoming 

out at -.21 (p < .05). It was also the case that the manufacturer recommended setting did not 

produce the highest validity in this context (r = -.47, p < .05). 

----------------------------------- 

Insert Figure 6 about here 

----------------------------------- 

 

Going beyond simply the count of ties, it is also instructive to see how well the social 

structure of these teams is revealed by the WSs at various thresholds. Figure 6 depicts the 

differences between the known co-location structure of our simulated environment and the 

structure generated by the WS at two different Bluetooth signal cutoffs for two representative 

sessions. The top image represents the “true” co-location structure of individuals during the 
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simulated exercise. The next set of images represents Bluetooth detections at a RSSI of -90 (most 

liberal cutoff), followed by the same picture at more and more stringent cutoffs.  

Clearly, these pictures show that the decision of which RSSI to use as a cutoff can have a 

profound influence on the generated co-location structure. In our simulated lab environment, the 

most liberal cutoff generated too many between team ties for non-boundary spanners. As may be 

recalled from Study 1, a Bluetooth signal can sometimes be detected across walls, and hence 

detections between rooms cannot be ruled out in this case when the threshold is set at the most 

liberal level. However, at the most stringent cutoff level, the WS data stream failed to generate 

all the known within team ties, and thus, was also problematic. 

In this case, a more moderate setting of >-75 generated a social structure that best 

matched the known co-location network as a whole. This differed from the recommended value 

set by the manufacturer, and also differed from the best setting for the simple detection of 

boundary spanners, per se. Thus, the best cutoff to employ in this context is also contingent upon 

whether the primary interest is in identifying boundary spanners at the individual-level or the 

larger social structure at the team-level. One potential explanation for this is that because the 

correlation is based upon variance, the liberal cut offs generate the largest standard deviation 

which creates the largest correlation. However, the errors of omission appear to be less of a 

problem in representing the whole network structure relative to the error of commission (which 

quickly leads to an overly saturated graph). Thus, again the nature of the research question and 

environmental factors drives the decisions regarding how to set threshold levels. 

Still, although there are differences due to the chosen threshold, it is important to not lose 

sight of the fact that when the best threshold is identified, the ability of the WSs to detect 

boundary spanners and the co-location structure of these teams is quite impressive. If a 
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researcher was not on-site in this facility on the evenings where this activity took place, that 

researcher would actually get a highly valid picture when it came to boundary spanning and co-

structure just from the appropriately analyzed Bluetooth data streams.   

Evidence Regarding Emergent Leadership 

Study 3b builds upon Study 2 and Study 3a by focusing on using the microphone and, in 

particular, using measures of verbal activity to predict leadership emergence in a team context. 

Leadership emergence refers to the recognition of others that a particular individual is distinctive 

in terms of having a strong degree of social influence within the group. Leadership emergence is 

of significant interest to behavioral researchers because of the disproportionate influence that 

such individuals have on the goals, structure, and processes of the group (Zaccaro & Klimoski, 

2002). 

Leadership emergence can be assessed with self-reports, but social desirability bias often 

introduces error into such measures because of the societal value placed on being a leader or 

displaying leadership qualities (DeRue & Ashford, 2010). Thus, measures of leadership 

emergence often require the collection of reports from other people, but these measures are 

sometimes colored by halo errors or similar-to-me biases. Still, at this point in time, a measure 

based on aggregated ratings across a number of different raters who can be shown to agree is 

considered the best available standard for capturing this construct. In Study 3b we focus on how 

the amount of time speaking as captured via a microphone can predict leadership emergence in 

newly formed teams. 

For this study, we gathered data across 15 different sessions from the same research suite 

described in Study 3a, each lasting between one and two hours. The teams that participated in 

Study 3a were not the same teams that took part in Study 3b, and hence this data is independent 
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from the data reported above. In this case, each session included two to three newly formed 

teams, each consisting of four to five members, working in a computerized simulation activity in 

a controlled setting. In total, these sessions allowed us to observe 205 individuals nested in 43 

teams. 

Within this setting, team members worked together to perform a complex, interdependent 

task called LDX. This task is described in detail elsewhere (see Davison et al., 2012), but for 

purposes here, we will note that it requires team members to initiate structure, coordinate efforts, 

and make collective decisions. Team members speaking up in this context often results in their 

emergence as a leader, because as the team grapples for collective understanding and processes, 

team members often rely on the more vocal members to coordinate activities and make important 

decisions.  

We measured leadership emergence with items from a previously validated scale (Kent & 

Moss, 1994; Lord, Foti, & De Vader, 1984; Taggar, Hackew, & Saha, 1999). This scale is 

comprised of four items focusing on whether the individual exerts influence, leads the 

conversation and influences the team’s goals and directions. Leadership emergence ratings from 

all of the other team members (provided immediately after completing the session) for the focal 

individual were then averaged. The raters in this study were shown to agree, in the sense that 

ICC(1), ICC(2), and rwg values were well above the cut-offs typically invoked to justify 

aggregation. For these data the ICC(1) was .35, ICC(2) was .71, and rwg was .91(James, 1982; 

James, Demaree, & Wolf, 1984). 

For measures of speaking, the WS data were collected and the two speech detection 

algorithms used in Study 2 were employed here to capture total speaking time (the number of 
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seconds each individual spoke). Thus, we have one measure of leadership emergence, and two 

speaking measures from the WSs. 

--------------------------------- 

Insert Table 9 about here 

--------------------------------- 

The summary statistics and correlations for our measures can be found in Table 9. Here 

we show that the average total speaking time is 505.6 seconds according to the manufacturer 

recommended algorithm whereas total speaking time is 229.8 seconds according to the optimized 

algorithm emerging from in Study 2. This equates to approximately 8.4 to 3.8 minutes, 

respectively, of speaking on average. While the correlation between these two measures is 

statistically significant (r = .30, p < .05), suggesting some overlap, the difference in the raw level 

between these measures is substantial. In addition, we note that correlation differs from our 

findings in Study 2 which we partially attribute to a firmware upgrade shortly after Study 2 was 

completed. 

Turning to the predictive validity of alternative speaking measures for the criterion of 

leadership emergence, we see that there was a small, but statistically significant correlation 

between leadership emergence and the optimized algorithm (r = .14, p < .05). The correlation for 

manufacturer recommended algorithm was actually opposite the proposed direction (r = -.03) 

and not statistically significant. Thus, we conclude that while the correlation between speaking 

time as measured by the WS and leadership emergence is not strong, there appears to be some 

ability of the WSs to predict leadership emergence via speaking time as measured with the 

optimized algorithm. Collectively, these results suggest that the ability of the WSs and the 

supporting analytic software to predict leadership emergence is conditional on the algorithm used 

to assess and assign speaking.  
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In conclusion, as part of the overall portfolio of studies, Study 3 extends Study 1 and 

Study 2 by showing how one might use WSs to detect common constructs that might be of 

interest to behavioral researchers. In addition, the paradigm underlying Study 3 simulates how a 

WS would perform in a laboratory context with non-scripted human research participants where 

there are known true scores (or the best alternative, that is, aggregated reports from others shown 

to agree on a validated scale). Study 3 is limited, however, in the sense that research participants 

were observed for only a short time in a small and tightly controlled space. Study 3, does not 

simulate how WSs might be used in less controlled field studies that might take place over wider 

space and time intervals. In Study 4 we seek to address these limitations.  

Study 4 

As previously mentioned, Study 3 attempts to simulate the use of WSs in laboratory 

contexts. Although less controlled than Study 2, where human participants read scripts, there was 

sufficient control of time and space to know the true scores for the measures that we were 

validating. In Study 4, we extend this portfolio of studies to examine how one might employ 

WSs in a field study where research participants interacted in wide-ranging and uncontrolled 

space over an extended time period. 

In this context, it is impossible to ascertain known true scores, and hence, unlike Study 1 

through Study 3, we used subjective self-reports and self-reported schedules as criteria for 

assessing WS performance. Clearly, for reasons we noted at the outset of this manuscript, these 

ratings provide a questionable criterion, and if we had faith in these sorts of measures, there 

would be no need for WSs. However, for comparison purposes, we use self-reports as a helpful 

proxy for our phenomena of interest. In addition, beyond the issue of detection accuracy, we 

were also interested in deriving some qualitative experience for a long term deployment of WSs.  
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Specifically, Study 4 took place in a field setting and focused on the detection of co-

location using infrared and Bluetooth. For this study, the WSs were worn for a 6 week period by 

14 individuals working as part of an ongoing research team at a major university. This team 

included full professors, assistant professors, senior graduate students, junior graduate students, 

and undergraduate students who were part of two different departments in the same college. In 

addition to the 14 individuals, we placed 3 WS "base stations" in locations where these 14 

individuals would be likely to congregate (i.e. conference rooms and laboratories). Base stations 

are useful when there are a small number of places where participants congregate, because they 

provide triangulation opportunities for assessing co-location. 

Co-location. For the first part of Study 4, we focused on the Bluetooth and infrared 

sensor to determine the degree to which WS ratings of co-location converged with self-ratings of 

co-location in an uncontrolled field study where participants wore WSs for six weeks as part of 

their normal work life on and off campus. In this context, we tested the degree to which weekly 

self-ratings of co-location were correlated with weekly data from the WSs at various levels of 

Bluetooth strength. As we noted when discussing the results from Study 1, a conservative 

Bluetooth signal level threshold led to greater discrimination of proximity. Here we examine 

multiple levels of Bluetooth RSSI because in this study, we consider a more realistic context for 

the use of the WSs in a field setting. Understanding the convergence of Bluetooth and surveys of 

co-location at different levels of Bluetooth RSSI is important in order to understand best 

practices of using Bluetooth detection data as a measure of co-location.  

In this case we do not know exactly when or where these participants were co-located 

through the week outside of a regularly scheduled weekly project meeting. To determine the 

accuracy of the WSs to detect co-location we triangulate between two other measures. First we 
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collected self-reports of co-location from the participants on a weekly basis. Second, for the 

participants of this study, their respective role in the team and their weekly schedules are known 

by our research team. Thus, while convergence between co-location as measured by the WSs and 

these two other measures are not entirely free from bias attributable to the limits of the self-

reported data; evidence of convergence is still a relevant criterion for assessing the validity of the 

Bluetooth and infrared data to assess co-location. 

Participants in this study completed a weekly survey asking the number of hours they 

spent with each other member of the team and the chosen locations containing a base-station. 

The values ranged from none to over four hours on a six point scale. Because the correlation was 

moderately high (r = .48) among the surveys for connections among team members, we averaged 

the two measures, and when one member failed to complete the survey, we used the other 

individual's score for that measure of co-location. Because of the lack of interactions during a 

holiday week, one week was dropped from this analysis. Therefore, the number of observations 

for this study is 423, which is an average of 85 dyads across 5 weeks. 

As shown in Table 10, there was convergence among all these measures of co-location, 

although the magnitude of this varied substantially. Less stringent cutoffs generated higher 

convergent validities (r = .51 p < .05) and these validities decreased steadily as the cutoff 

became more stringent, bottoming out at (r = .26 p <.05). Self-reported co-location correlated 

higher with Bluetooth than infrared across all thresholds investigated.  

--------------------------------- 

Insert Table 10 about here 

--------------------------------- 

Triangulation is another approach to evaluate the WSs ability to measure co-location. To 

assess the combination of both infrared and Bluetooth to measure co-location, we conducted a 
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regression analysis which is reported in Table 11. In this analysis, we predict the survey 

measures of co-location and in Model 1, we include the count of Bluetooth detections of -90 or 

greater RSSI. This coefficient is positive and significant (β = 0.005 p <.01) as expected and 

accounts for 26.5% of the variance in self-reported co-location. In Model 2 we include the total 

count of infrared detections. Finally in Model 3 we also include infrared total by minute. This 

coefficient is not significant (p =.21), and the inclusion of this variable explains an incremental 

0.2% of the variance in self-reported co-location which again is not statistically significant.  

In sum, these results suggest that while Bluetooth and infrared supposedly offer 

complementary measures of co-location they, in fact, do not converge when it comes to assessing 

co-location. In addition, the combination of these predictors does not appear to explain 

substantively more variance in self-reported co-location. Given the space and battery 

consumption of the infrared sensor, one might question the added value of this sensor relative to 

just the Bluetooth sensor alone, at least when worn loosely around the neck and chest. 

--------------------------------- 

Insert Table 11 about here 

--------------------------------- 

Although correlations such as those reported in Table 10 are informative when it comes 

to convergence of tie strength among independent actors, this does not consider the structure of a 

whole network. To understand the convergence of co-location structure measured with self-

reports versus Bluetooth, we constructed the co-location networks that would have been 

generated for this specific set of people via alternative methods, using the >-90 Bluetooth 

threshold to measure the edges with the individuals and office locations as the nodes. 

Interestingly, this is a less conservative threshold than Study 3a, which we employed because 

there were more substantial physical barriers between participants in this study. This further 
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reinforces the importance of configuring sensor calibrations to the research question and physical 

context. 

The upper image of Figure 7 represents the network according to self-reported co-

location and the lower image of Figure 7 indicates the network according to Bluetooth detection. 

Although there is some degree of convergence and divergence between these two figures, in 

general, the co-location networks generated by these alternative sources were very similar. A 

researcher who did not know this set of people would get a strikingly accurate picture of their co-

location network from a set of WSs. For example, the strong connections between the 

undergraduates (UG) and the MTS laboratory are strong for both networks, as well as the 

connections between the graduate students (GS) and professors within departments 

(MGTP/MKTP). 

--------------------------------- 

Insert Figure 7 about here 

--------------------------------- 

Still, there were some discrepancies across sources, and it was instructive for us to 

examine these at a more molecular level. For example, two graduate students had a class with 

one of the professors, and thus spent a minimum of 3 hours per week co-located as part of this 

course. The self-report results do not seem to “count” these interactions – almost as if the 

subjective reporters did not consider the interactions within class as relevant – but the WSs did. 

In addition, there was an unusually a high number of detections between one undergraduate 

student and the base station set up in the laboratory. After following up on these results we 

learned that the undergraduate student’s WS was accidently left on in the laboratory without 

being worn.  
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Summary. In general, these results suggest that there are significant limitations in using 

infrared for measuring co-location. Further, these results suggest that while there are some errors 

regarding both self-reported and Bluetooth measures of co-location, it appears that the WSs offer 

significant potential for measuring co-location networks via Bluetooth sensor technology. 

Verbal Activity. The second part of Study 4 focuses on the convergence between the WS 

derived measures of speaking dominance with self-reported measures of speaking dominance. As 

noted above we do not have true score measures of who dominated conversations; however, we 

do know that all people were together in the same room. Immediately after each meeting, the 

participants completed a survey indicating the degree to which various participants dominated 

the conversation relative to not speaking on a scale of 1 to 5. These ratings were then averaged 

across raters to establish a measure of dominance and rank ordered for each person for a given 

meeting. To align the measures with the WS data, we took the total speaking time of the 

participants and rank ordered the participants based on the number of speaking seconds. We then 

correlated the survey measure with the ranked measures. 

The results of this analysis are shown in Table 12. The number of observations for this 

analysis is 80, based on the fact that it captures activity at 12 separate meetings with attendance 

ranging from 5 to 9 participants. As illustrated in Table 12, the correlation between the two 

speech detection algorithms underlying the calculation of verbal dominance reached an 

encouraging (r = .75 p < .05). This is not surprising as convergence between algorithms is 

expected to increase with the duration of the study. Although strictly speaking, the number of 

observations for generating the correlation reported in Table 12 is eighty, in reality, because most 

of the WSs fire several times a minute (or second), the number of observations (or “items” in 

psychometric parlance) across the 12 roughly one hour meetings is well into the thousands. 
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Therefore, the number of observations greatly increases the opportunity to converge on the true 

score of dominance. Table 12 also shows that the two different operationalizations converged 

when it came to predicting other-reports of dominance, with both correlating exactly the same 

with participant ratings (r = .53). Therefore, the two approaches to measuring speech in this 

study showed similar levels of convergent validity. 

--------------------------------- 

Insert Table 12 about here 

--------------------------------- 

Summary. Based on this set of results, taken as a whole, we conclude that although the 

convergence between the WS and survey measures is not perfect, it appears that the WSs offer 

some potential to identify dominant speakers in a field study setting. If a researcher was not at 

these meetings and was not able to survey the participants after each meeting, the researcher 

would nonetheless have some degree of knowledge about what took place in this room based 

solely on WS reports. Although the degree of convergence is modest, this fact needs to be 

considered in light of the limitations of the subjective self-reports, which are far from perfect, 

and thus place an upper limit on convergence.  

Discussion 

 The advent of “big data” collection and computing is revolutionizing the world in 

general, and thus it should not be surprising that this would eventually touch the lives of 

behavioral researchers. There are many different reactions that we as social scientists could take 

to these developments. First, we could go into denial and hope this is just a fad that will pass 

over in due time. Certainly, the evidence we have provided here regarding WSs is far from 

perfect when it comes to assessing behavioral constructs, thus leaving room for denial. This 

response might be especially attractive because as a discipline, we seem to have become so 

accepting of the limits of retrospective self-reports and other reports for capturing behavioral 
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measures that we act as if those limitations do not exist. We do not believe that denying the value 

of WS generated data is a constructive stance to take toward these technological developments. 

WSs are here to stay, and the opportunity to use this moment in time to make game-changing 

adaptations to business-as-usual should not be squandered. 

One might also take the stance that big data as captured by WSs may have value 

someday, but we should wait for the engineers to perfect these devices before we adopt them in 

our research. Again, the evidence presented here is not perfect when it comes to supporting the 

construct validity for some of the measures derived from the WSs. Hence, one could simply ask 

the engineers to do their psychometric homework and come back to us when the evidence is 

stronger. We believe this “wait and see” attitude is also unwarranted first two reasons. 

 First, the technological challenges associated with building platforms such as this, along 

with the accompanying software and analytic algorithms are non-trivial. Engineers with the skills 

to overcome these challenges need to be steeped within their own disciplines. Building effective 

WSs require a complex set of skills associated with understanding of the capacity of an ever 

increasing array of sensors, batteries and the necessary design and manufacturing acumen to 

mass produce reliable devices at a feasible cost. WSs have to operate reliably despite being 

jostled, dropped, covered, and in one case in Study 4, being slammed inside a car door. It is a lot 

to ask of scientists who have the expertise to do all of this, to also be experts in psychometrics. 

For example, within the field of psychometrics, it is well-understood that item-total correlations 

are maximized when the variance for the dichotomous variables approaches the maximum (i.e., 

base rate value of .50). Thus, one potential means for establishing the threshold value for a 

sensor is to choose the value that creates this specific base rate. This is an insight that may be 
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more familiar to a psychometrician relative to an engineer who is unfamiliar with test 

construction and construct validation principles. 

Second, even if these individuals were to develop the psychometric skills we take for 

granted in the behavioral sciences, the potential that they might derive measures and constructs 

that differ from what already exists within our literature would be a risk that is too great to 

tolerate. That is, we cannot also expect this set of people to be experts in the extant scientific 

literature on individuals, interpersonal dyads, groups/teams, and larger organizational structures. 

Yet, this would have to be the case to prevent a situation where WS engineers start generating 

new constructs on their own that overlap little with the constructs upon which our theories and 

knowledge base have developed over the last one hundred years in behavioral sciences. The 

ability to employ WSs as a game-changing development in the sciences will require that we 

integrate the constructs and measures that emerge from this measurement technology with the 

extant knowledge base. It would be a loss if we were unable to leverage the current knowledge 

base and then have to “start over from scratch” with these new constructs and measures. Thus, 

we do not feel that a “wait and see” attitude is an appropriate reaction to these developments. 

Finally, a third reaction that one might have toward this new technology is to simply 

accept it as is, place WSs on research participants, cross our fingers, and then hope for best. 

There is very little in the evidence that we present here that would warrant this course of action. 

Uninformed and uncritical use of this technology is particularly hazardous because of the highly 

interdependent nature of decisions related to construct (e.g. level of analysis), technology (e.g. 

sensor type) and analytical approaches (e.g. algorithms). These challenges are exacerbated by the 

non-transparent nature of the proprietary analytical process for creating measures of behavioral 

constructs generated by WS data. 
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In our opinion, the stance that we as behavioral and social scientists should be taking 

toward these new technological developments is to work alongside engineers in order to help 

improve the measures derived from WSs and integrate them into the extant knowledge base. 

That is, starting with the extant knowledge base and validated measures as the initial 

groundwork, we need to ask questions such as “How can boundary spanning, as traditionally 

defined and measured, be effectively captured with data generated with WS technology?”, “How 

can cohesiveness as traditionally defined and measured be effectively captured with data 

generated with WS technology?”, and “How can ‘tie strength’ as traditionally defined and 

measured be effectively captured with data generated with WS technology?”  

Although this entails a great deal more effort than “denial,” or “wait and see” or “blindly 

and uncritically hoping for the best,” we believe this challenge is deserving of our efforts. In 

some cases that we document here, the current generation of WSs actually performs with almost 

striking accuracy. We were impressed by the strong convergence in the co-location networks 

generated by the Bluetooth data in Study 3 and Study 4. To think that someone who did not 

know or survey this set of individuals could so accurately know their social structure was 

remarkable. Of the basic measures that are generated by the WSs in this study in our opinion 

they identify co-location very well as is, especially when the data are collected over long 

durations.  

As a means of detecting verbal activity, the WSs we studied performed moderately well 

although not nearly as well as was the case for co-location. Although we did not have any true 

scores for Study 4, this was a long duration study where the two different measures of speaking, 

generated by two different algorithms, converged with each other and showed similar 

correlations with self-and other reports of speaking frequency. However this was not the case 
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with Study 2, where the two different measures did not converge (and the optimized algorithm 

was more accurate for predicting a known true score. The difference here may be attributable to 

the length of time people were studied, and across all measures we examined here, the longer the 

time period (i.e., the more items) the better the results. 

Recommendations and Best Practices 

In terms of going forward, there are several recommendations that can be made based 

upon these results when it comes to planning, conducting and reporting a WS-based study.  

When planning a research project. In the planning phase, when choosing a wearable 

sensor system, researchers should carefully evaluate whether sensor type, attachment location 

and mode (e.g., lanyard, wristband, etc.) align well with the source and nature of the behavioral 

signal to be captured. Regardless of the choice of WSs we strongly encourage to allocate time for 

extensive sensor pretesting to inform decisions related to the observation time and analytical 

strategy.  

For example, in pre-testing Bluetooth-based proximity sensors we recommend that 

researchers utilize the sensors on subjects with a known co-location network in a physical setting 

resembling the actual study environment. This approach allows for an informed decision related 

to what Bluetooth signal strength might constitute a legitimate interaction opportunity. 

A similar approach can be used for audio sensors. Building on known conversation 

patterns, researchers should develop a clear understanding of the joint impact of variation in 

sensor sensitivity and particular choices of speech detection algorithm on measurement accuracy.  

At present, researchers can expect that the components of wearable sensor systems are 

subject to rapid technological advances. To leverage these advances, manufacturers operate 

using short development cycles resulting in frequent updates and reduced product longevity. 
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Over the course of a longitudinal study investigators may have to accommodate multiple pre-

testing episodes in order to confirm the optimal configuration and measurement consistency.  

Contingent on the findings during sensor pre-testing, researchers should adjust 

observation periods. For example, we found that the wearable sensors used in our study exhibited 

a high level of random error. Longer study windows increase the likelihood that measurements 

will converge on the true score. Our experience would suggest that one-shot laboratory studies 

where the observation period is short (one or two hours) may be better off employing digital 

video recordings. 

Finally, in the planning and pre-testing phase it is critical for researchers to scrutinize 

both the firmware installed on the sensors as well as the software solution used to download and 

analyze the data. In our studies we found that performance of the sensors can vary dramatically 

based on the firmware release and that the options and workflow varied significantly with 

different software solutions. In the planning phase, it is critical for researchers to pretest the 

robustness of these factors prior to substantial data collection. 

When conducting data collection. When conducting the study, we suggest that 

researchers pay close attention to subject compliance, procedures for monitoring and maintaining 

sensor function, and the configuration of sensors in the research site. 

For research using WS technology, compliance of the research subjects is paramount. In 

particular, when sensors capture interaction data, as illustrated in Study 2, the failure of a single 

sensor or the failure of an individual to wear the sensor has a significant impact on overall 

network data quality. To minimize this problem we recommend researchers enhance compliance 

by educating subjects to properly wear the sensor and regularly monitor data stream integrity to 

ensure sensor function and subject compliance. This involves downloading WS data on a regular 
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basis and analyzing it near-real-time to identify anomalies (such as sensors not moving or not 

detecting speech).  

Research involving WSs should also include procedures for device charging and 

synchronization. The WSs used here, required regular charging and clock synchronization to 

avoid temporal drift. Drifting clocks in WSs can lead to the WSs assessing the same 

phenomenon but at different recorded times which would greatly affects the accuracy of 

interaction-based analytics.  

Finally, the configuration of the sensors at the research site can be critical to effective 

data collection. For example, because Bluetooth sensors report some level of random error 

within a particular timeframe it can be useful to place base stations at strategic locations (e.g. 

lunch room) for triangulation purposes when it comes to detecting co-location in well-known 

meeting areas. 

When reporting and evaluating research. When working with WS technology, it is 

important for researchers to report and justify their choices regarding data analysis and 

interpretation (e.g., RSSI Bluetooth signal strength threshold, speech detection algorithm setting 

and the data aggregation approach) because the substantive results may vary as a function of 

these decisions. In terms of Bluetooth-based proximity sensors, the interaction patterns reported 

by the WS will vary significantly based on the RSSI signal strength threshold adopted as well as 

what an interaction is deemed to look like. For example, a more liberal approach might count any 

Bluetooth detection between a dyad as a 60 second interaction while a more conservative 

approach would require joint detection by both nodes and count that as only a 30 second 

interaction. These decisions should be made on the basis of the severity of the risk of false 

positive versus false negative errors when it comes to detecting co-location.  
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In addition, the choice of speech detection algorithm can significantly alter how the 

situation is characterized, and therefore, rather than recommending a particular speech detection 

algorithm or settings, we suggest that through pretesting researchers choose, justify, and report 

their choice of speech detection algorithm because a universally optimal setting is unlikely to 

exist. In addition, we encourage researchers to pay particular attention to the type of algorithm 

selected (i.e. within vs. between-individual based measures) in light of their research question. It 

is critically important to understand that within-person measures assess how much one is talking 

in one context versus how much that same person is talking in a different context. Between-

person measures assess how much one person is talking relative to other people who are all in 

the same context. These are very different phenomena. Failure to match the measure and with the 

phenomena of interest actually seems to be quite common when we see others present WS-based 

research at professional meetings.  

Relatedly, the high data resolution afforded by WS’s provides a myriad of different 

approaches for aggregating these data to arrive at measures of a given construct. In this work we 

aggregated based on simple sums of detections or seconds spoken. For other research it may be 

of interest to take a variance or other aggregation approach. We suggest that these aggregation 

decisions should be explicitly disclosed and justified in future research using WSs.  

Finally, it is important for researchers to consider and minimize the risk of non-sensor 

wearers in a given study. While the central value proposition of wearable sensors relates to the 

accurate measurement of behavioral aspects related to human interaction, researchers operating 

in uncontrolled environments need to evaluate the effects of potential signal contamination by 

non-instrumented- subjects. 
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Conclusion 

As one of the first independent studies to examine WSs across the wide variety of 

contexts in which they might be employed in behavioral research, we obviously have only 

scratched the surface of what needs to be done to realize the full potential of these devices for all 

forms of behavioral research. Certainly, we see this as a conversation-starter for the field of 

behavioral research, and this will be hardly be the last word given the rapid changes in both 

sensor diversity and potential platforms for sensors. In particular, with respect to new platforms, 

it is hard to anticipate all of the potential sensor configurations (accelerometers, microphones, 

Bluetooth, optical scanners) and attachment modes (badges, wristbands, lapel pins, glasses and 

implants). We do believe this is a conversation that is worth having, and a conversation that 

should be led by the scientific community and not one simply left to engineers or to the non-

refereed popular press (e.g. Silverman, 2013). We hope as a first effort, the studies reported here 

serve as a catalyst and model for future researchers as we try to radically expand the way we 

think about measuring behavioral constructs. 
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Table 1 

Summary of Studies 

 Channel(s) Tested 
Study 

Characteristics 
Treatment 

Treatment 

Source 
Measures 

Study 

Setting 

Study 1 Bluetooth & Infrared 

3 Sessions 

24 WSs 

19 conditions 

Distance and 

barriers 
Fixed board Raw Lab 

 Microphone 

3 sessions 

24 WSs 

3 conditions 

Tone/Background 

Noise 

Speaker 

 
Raw Lab 

Study 2 Microphone 
18 Sessions 

24 WSs 

Scripted 

conversations 

Human 

participants 
Processed Lab 

Study 3 Bluetooth & Microphone 
24 Sessions 

20 WSs 

Boundary spanners 

Emerging team 

structure 

Experimental 

condition 

Human 

participants 

Raw & 

processed 
Lab 

Study 4 Bluetooth & Infrared 
20 Sessions 

13 WSs 

Field setting with 

perceived 

interactions 

Human 

participants 
Raw Field 

 Microphone 
10 Sessions 

13 WSs 

Unscripted 

conversations 

Human 

participants 
Processed Field 
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Table 2 

Results of OLS Regression predicting Bluetooth Detection Count 

Bluetooth Detection Count per Minute Model 1 Model 2 Model 3 Model 4 

Session fixed effects Included Included Included Included 

Experimental condition fixed effects Not Included Included Included Included 

WS fixed effects Not Included Not Included Included Included 

Session * WS fixed effects Not Included Not Included Not Included Included 

R2 0.005 0.595 0.678 0.692 

∆R2  0.591** 0.082** 0.014 

Notes: N = 1,368, Radio Signal Strength Indicator (RSSI) > -80 
**p < .01 
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Table 3 

Results of OLS Regression Predicting Infrared Detection Count 

Infrared Detection Count per Minute Model 1 Model 2 Model 3 Model 4 

Session fixed effects Included Included Included Included 

Experimental condition fixed effects Not Included Included Included Included 

WS fixed effects Not Included Not Included Included Included 

Session * WS fixed effects Not Included Not Included Not Included Included 

R2 0.000 0.944 0.947 0.948 

∆R2  0.944** 0.003** 0.001 

Note:  N = 1,368 
**p < .01 
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Table 4 

Results of OLS Regression Predicting Volume 

Volume Model 1 Model 2 Model 3 Model 4 

Sweep Tone  0.012** 0.012** 0.012** 

  (0.001) (0.001) (0.001) 

Stable Tone  0.013** 0.013** 0.013** 

  (0.001) (0.000) (0.000) 

Constant 0.019** 0.010** 0.004** 0.004** 

 (0.001) (0.001) (0.000) (0.001) 

Session fixed effects Included Included Included Included 

Microphone fixed effects Not Included Not Included Included Included 

Session * Microphone 

fixed effects 
Not Included Not Included Not Included Included 

R2 0.003 0.672 0.961 0.973 

∆R2  0.670** 0.233** 0.012 

Note: N = 216; standard errors in parentheses; Background noise is base condition for this 

regression analysis with the tones being dummy codes for the other respective conditions. 
** p < .01 
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Table 5 

Results of OLS Regression Analysis for Predicting Amplitude 

Amplitude Model 1 Model 2 Model 3 Model 4 

Sweep Tone  0.004** 0.004** 0.004** 

  (0.000) (0.000) (0.000) 

Stable Tone  0.000** 0.000** 0.001** 

  (0.000) (0.000) (0.000) 

Constant 0.005** 0.003** 0.003** 0.003** 

 (0.000) (0.000) (0.000) (0.000) 

Session fixed effects Included Included Included Included 

WS fixed effects Not Included Not Included Included Included 

Session * WS fixed 

effects 
Not Included Not Included Not Included Included 

R2 0.003 0.947 0.968 0.977 

∆R2  0.944** 0.038** 0.009 

Note: N = 216; standard errors in parentheses. Background noise is base condition for 

this regression analysis with the tones being dummy codes for the other respective 

conditions. 
** p < .01 
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Table 6 

Seconds Spoken by each Participant 

 Speaker A Speaker B Speaker C Speaker D 

Minute 1 30 10 10 10 

Minute 2 10 30 10 10 

Minute 3 10 10 30 10 

Minute 4 10 10 10 30 
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Table 7 

Correlations, means and standard deviations of speaking measures 

 Measure mean sd 1 2 

1. Speaking Time 15.00 8.69 -   

2. Manufacturer Recommended 

Algorithm Speaking Time 
23.71 15.81 0.15 - 

3. Optimized Algorithm 

Speaking Time 
15.31 9.61 0.36** 0.47** 

Note: N = 160 
**p < .01 
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Table 8.   

Descriptive statistics and correlations of study variables 

Variables mean s.d. Bspan WTT 

Boundary Spanner 0.31 0.46 -  

RSSI > -90     

  Within-team 259.88 139.36 -0.63* - 

  Between-team 176.85 119.28 0.43* -0.07 

RSSI > -85     

  Within-team 171.28 102.96 -0.60* - 

  Between-team 82.14 69.73 0.42* -0.06 

RSSI > -80     

  Within-team 79.40 59.46 -0.47* - 

  Between-team 26.74 29.91 0.32* 0.06 

RSSI > -75     

  Within-team 32.94 31.44 -0.32* - 

  Between-team 8.50 11.53 0.25* 0.18* 

RSSI > -70     

  Within-team 9.03 11.11 -0.21* - 

  Between-team 2.06 3.80 0.16* 0.32* 

Notes: N = 235; RSSI = Radio Signal Strength Indicator; Bspan = 

Boundary Spanner; WTT = Within-team ties; BTT = Between 

Team Ties 
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Table 9 

Summary statistics of speaking and leadership emergence 

 Measure mean sd 1 2 

1. Perceptions of Leadership 3.54 0.69 -  

2. Manufacturer 

Recommended Algorithm 

Speaking Time 

505.62 195.12 -0.03 - 

3. Optimized Algorithm 

Speaking Time 
229.81 182.05 0.14* 0.30** 

 Note: N = 205 
*p < .05 **p < .01 



www.manaraa.com

DRAFT

THE PROMISE AND PERILS OF WEARABLE SENSORS  59 

 

 

 

Table 10 

Correlations between Bluetooth detections and self-reported co-location 

Variable mean sd 1 2 3 4 5 6 7 

1. Self-Report 2.20 1.29 -       

2. Bluetooth > -90 75.73 141.12 0.51 -      

3. Bluetooth > -85 51.13 97.78 0.51 0.96 -     

4. Bluetooth > -80 25.91 57.80 0.45 0.83 0.94 -    

5. Bluetooth > -75 13.63 37.01 0.37 0.68 0.81 0.95 -   

6. Bluetooth > -70 7.21 25.53 0.26 0.53 0.64 0.80 0.94 -  

7. Infrared Total 3.69 18.88 0.14 0.39 0.47 0.61 0.75 0.91 - 

8. Infrared Total by Minute 0.45 1.53 0.23 0.49 0.57 0.68 0.76 0.83 0.86 

Note: N = 423; all correlations are significant p < 0.01; Numbers presented after the greater than sign represent different 

Radio Signal Strength Indicator (RSSI) thresholds utilized for identification of co-location. 
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Table 11 

Results of OLS regression predicting self-reported co-location 

Self-Reported Co-Location Model 1 Model 2 Model 3 

Bluetooth > -90  0.005** 0.005** 0.005** 

 (0.001) (0.001) (0.001) 

Infrared Total  -0.005 -0.011* 

  (0.003) (0.004) 

Infrared Total by Minute   0.091 

   (0.073) 

Constant 1.844** 1.843** 1.837** 

 (0.059) (0.060) (0.059) 

R2 0.265 0.269 0.272 

∆R2  0.004 0.002 

Note: N = 423; standard errors in parentheses; -90 represents the Radio Signal 

Strength Indicator (RSSI) threshold utilized for identification of co-location. 
*p < .05; **p < .01 
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Table 12 

Summary statistics of ranked dominance 

 Measure Mean sd 1 2 

1. Survey Ranking 3.95 2.11 -  

2. Manufacturer Recommended 

Algorithm Speaking Rank 

3.95 2.11 0.53** - 

3. Optimized Algorithm Speaking 

Rank 

3.96 2.11 0.53** 0.75** 

 Note: N = 80 
**p < .01 
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Figure 1 N = 936 All Bluetooth detection count per minute by distance 

Note. The plots are a typical box and whisker such that the mean is indicated by the horizontal 

line, the 25th and 75th percentiles are indicated by the upper and lower shaded box, the 

whiskers and dots represent more extreme values in detection count. 
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Figure 2 N = 936 Bluetooth detection count per minute RSSI > - 80 
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Figure 3 N = 432 Bluetooth detection count per minute RSSI > -80 
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Figure 4 N = 936 Infrared detections per minute by distance 
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Figure 5 N = 432 Infrared detections per minute by barrier 
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Known Structure Known Structure  

RSSI (>-90) 
 

RSSI (>-90) 

 
RSSI (>-70) RSSI (>-70) 

Notes: RSSI = Radio Signal Strength Indicator [-70, -80, -90]; ○ = boundary spanner  

Figure 6 Bluetooth detection networks at different RSSI 
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Figure 7 Upper image co-location network based on survey responses. Lower image co-location 

network based on Bluetooth detections RSSI>-90  

Key: UG: Undergraduate students GS: Graduate students MGTP: Management professors 

MKTP: Marketing professors MTS Lab: Research Lab MGT: Management office MKT: 

Marketing office 
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